読者です 読者をやめる 読者になる 読者になる

徒然散歩

経済や数学など自分の興味ある分野について書いています。

数の風景-7

 素数
 素数は1,2,3,4,・・・と続く自然数の中で1とその数自身でしか割り切れ
 ない数です。
 20までの数でそれに該当する数は1を除けば2,3,5,7,11,13,17,

 19の8個あります。数が増えるにつれて現れる素数の数は少しずつ少なくなって
 いくようですが、どれだけ大きくなっても発生しなくなることはないそうですね。
 この素数の現れる確率を表す素数定理というものがあり、それに関連する研究は今

 も続けられているようです。
 リーマン予想の証明という難問もこの素数に関係したものだそうで、面白そうだけど
 専門的過ぎて私は付いていけません。ただ あとで何らかの機会に素数定理に触れる

 かもしれません。

 それにしても素数というものをどう理解したらいいんでしょうか。私は「1を除く
 素数の網かごが、それぞれの素数からスタートしてその素数の長さごとに編み
 こまれていく網紐でつくられており、大きく編み進めていくほどに1本の網紐も
 通さない穴が現れる。そこからまた新しい網紐をスタートさせてさらに編み進め
 ていく。しかしどれだけ網紐数を増やしても世界を1つの穴もなく包み込むこと
 はできない。」というようなイメージをもっています。

 

f:id:shurrow2005:20170424102713j:plain


 ここで問題です

 つぎの条件で、素数でない数で素数をつくることかできますか。逆に素数
 だけで別の素数をつくることはできるでしょうか。
 条件: 計算式には1は使わないこと、そして+-×÷まで使っていいこと
     にします。

   答えは次回ブログで